Reg. No:					
0					

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY .: PUTTUR

(AUTONOMOUS)

B.Tech III Year II Semester Regular & Supplementary Examinations October-2020 HEAT AND MASS TRANSFER

(Agricultural Engineering)

Time: 3 hours

	(Agricultural Engineering)	
ime:	3 hours Max. Marks	s: 60
	(Answer all Five Units 5 x 12 = 60 Marks) UNIT-I	
1	a Various modes of heat transfer-Explain.	7M
	b What are the assumptions that are made in Fourier's law?	5M
2	OR Derive the expression for general heat conduction equation in Cartesian coordinates.	12M
3	a What is Semi-infinite body?	6M
-	b Derive an expression for heat conduction through a composite wall. OR	6M
4	A rector's wall, 320 mm thick, is made up of an inner layer of fire brick ($k=0.84$ W/m $^{\circ}$ C) covered with a layer of insulation ($k=0.16$ W/m $^{\circ}$ C). The reactor operates at a temperature of 1325 $^{\circ}$ C and the ambient temperature of 25 $^{\circ}$ C. Find the thickness of fire brick and insulation which gives minimum heat loss.	12M
5	a What is Newton's law of viscosity?	6M
	b Define Grash of number. Explain its significance in convection heat transfer.	6M
	OR	
6	A vertical cylinder 1.5 m high and 180 mm in diameter is maintained at 100° C in an atmospheric environment of 20° C. Calculate the heat loss by free convection from the surface of the cylinder. Assume properties of air at mean temperature as $\rho = 1.06$ Kg/m ³ , v= 18.97x10 ⁻⁶ m ² /s, K = 0.10421 W/m ^o C, Cp = 1.004 kJ / kg ^o C.	12M
	UNIT-IV	
7	a State the merits and demerits of NTU method over LMTD method.	6M
	b A wire of 1.2 mm diameter and 200 mm length is submerged horizontally in water	
	at 7.0 bar. The wire carries a current of 135.0 A with an applied voltage of 2.18 V. If the surface of the wire is maintained at 200 $^{\circ}$ C, Calculate the following:	6M
	(i) Heat flux (ii) The boiling heat transfer coefficient.	
	OR	
8	Derive an expression for logarithmic mean temperature difference in case of parallel flow	12M
	heat exchanger.	12111
	UNIT-V	
9	A distillation column containing a mixture of benzene and toluene is at a temperature of 105 $^{\circ}$ C and a pressure of 1 bar. The liquid and vapour phases contain 20% mole of benzene and 55 % mole of toluene. At 105 $^{\circ}$ C the vapour pressure of toluene is 0.72 bar and its diffusivity is 5.2X 10 ⁻⁶ m ² /s. Assuming the equimolar diffusion, calculate the molar diffusion flux of toluene if the diffusion zone is 0.35 m thick.	12M
10	OR Distinguish between a black body and gray body	<u>AM</u>

10 a Distinguish between a black body and grey body.

b A gray surface is maintained at a temperature of 727 ° C. If the maximum spectral emissive power at that temperature is $1.37 \times 10^{10} \text{ W/m}^3$.determine the emissivity **6M** of the body and the wavelength corresponding to the maximum spectral intensity of radiation.

6M